Application of the thermoporoelasticity model in numerical modelling of underground coal gasification influence on the surrounding medium
Author:
Uciechowska-Grakowicz Anna1, Strzelecki Tomasz2
Affiliation:
1. Wrocław University of Science and Technology , Faculty of Civil Engineering , Wybrzeże Wyspiańskiego 27 , Wrocław , Poland 2. Wrocław University of Science and Technology , Faculty of Technology and Life Sciences , Wybrzeże Wyspiańskiego 27 , Wrocław , Poland
Abstract
Abstract
The purpose of this paper was to present the thermoporoelasticity model adapted for application in modelling processes, where phase transition may occur, such as during underground coal gasification (UCG). The mathematical model of the medium (soil/rock with pores filled with liquid/gas) in non-isothermal conditions is based on Biot's poroelasticity model. The poroelasticity model is expanded here by the influence of temperature and adjusted to the case where both liquid and highly compressible fluid are present in pores by using the gas laws. This requires considering temperature-dependent physical quantities such as pore fluid density, heat transfer coefficient and viscosity as functions of temperature. Based on the proposed mathematical model and the finite element method, a numerical model was built for the purpose of computing processes occurring in the vicinity of the UCG generator. The result of the authors’ work is a three-dimensional (3D) model, which was not only modified, but derived straight from the laws of thermodynamics, where fields of displacement, temperature and fluid flow are coupled. The model makes it possible to determine results significant to modelling of the UCG process, the reach of the gaseous phase's presence in pores, subsidence values, temperature distribution and directions and rate of seepage, without losing the simplicity and elegance of Biot's original concept. Next, the results of simulations for a hypothetical deposit to estimate the environmental impact of UCG are presented. After applying specific geometry and parameters, the model can be useful for verifying if the chosen technology of UCG in specific conditions will be safe for the environment and infrastructure.
Publisher
Walter de Gruyter GmbH
Subject
Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Reference48 articles.
1. Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., Smoliński, A. (2016). Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel, 173(January), 239–246. https://doi.org/10.1016/j.fuel.2016.01.019 2. Meeting, A., Engineers, C., Francisco, S. (1984). Commercial project planned for underground coal gasification. Chemical and Engineering News, 62(51), 25–27. https://doi.org/10.1021/cen-v062n051.p025 3. Shafirovich, E., Varma, A. (2009). Underground coal gasification: A brief review of current status. Industrial and Engineering Chemistry Research, 48(17), 7865–7875. https://doi.org/10.1021/ie801569r 4. Wiatowski, M., Stańczyk, K., Świadrowski, J., Kapusta, K., Cybulski, K., Krause, E., … Smoliński, A. (2012). Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine “barbara.” Fuel, 99, 170–179. https://doi.org/10.1016/j.fuel.2012.04.017 5. Mocek, P., Pieszczek, M., Świadrowski, J., Kapusta, K., Wiatowski, M., Stańczyk, K. (2016). Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland. Energy, 111, 313–321. https://doi.org/10.1016/j.energy.2016.05.087
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|