An Analytical Study of Annular Raft on Granular Piles

Author:

Rathor Ajay Pratap Singh1,Sharma Jitendra Kumar1,Madhira Madhav2

Affiliation:

1. Civil Engineering Dept. , Rajasthan Technical University, University Department , Kota - , India

2. Civil Engineering Dept. , Jawaharlal Nehru Technological University & I.I.T. Hyderabad , India

Abstract

Abstract Rafts are frequently used to design foundations on soft soils to minimize the overall and differential settlements of structures built on them. In many cases, the raft alone can offer sufficient bearing capacity and all that is needed to restrict foundation settlements to a predetermined level with a few widely spaced piles. Granular piles (GPs) can be used due to their several advantages over steel or concrete piles. An annular raft foundation is generally provided for overhead water tanks, chimneys, etc. The provision of granular piles underneath the annular raft foundation not only increases the capacity of the foundation but also minimizes the settlement to an acceptable level. The present study deals with a rigorous analysis of annular raft foundation supported by GPs based on the continuum approach. A new numerical method is developed with geometric considerations for excluding the loaded pile portion from the region of the raft area by considering two distinct zones. This article introduces a novel approach, the annular raft over granular piles, which represents an innovative solution in geotechnical engineering. This innovation has the potential to improve the efficiency and effectiveness of foundation design in various construction projects. The response of annular raft foundation with GPs is evaluated in terms of settlement influence factor (SIF), load shared by granular piles (in %), and normalized shear stress variation along the GP–soil interface. The present study reveals that the presence of the pile influences the stress distribution locally. The stiffness of GP, relative length of GP, relative size of the raft influence the settlement and load sharing of annular raft with GPs.

Publisher

Walter de Gruyter GmbH

Reference50 articles.

1. Randolph, M. F., & Wroth, C. P. (1978). Analysis of deformation of vertically loaded piles. Journal of the geotechnical engineering division, 104(12), 1465–1488.

2. Poulos, H. G., & Davis, E. H. (1980). Pile foundation analysis and design (Vol. 397). New York: Wiley.

3. O’Neill, M. W., & Raines, R. D. (1991). Load transfer for pipe piles in highly pressured dense sand. Journal of Geotechnical Engineering, 117(8), 1208–1226.

4. Madhav, M.R. 1982. Recent developments in the analysis and design of granular piles. Symp. On Soil and Rock Improvement Tech. Bangkok, Thailand, Dec, 117–129.

5. Van Impe, W.F. and De Beer, E. 1983. Improvement of settlement behavior of soft layers by means of stone columns. Proc.7th ECSMFE, Helsinki, Vol. 1, pp. 1207–1210.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3