Estimation of Screw Displacement Pile-Bearing Capacity Based on Drilling Resistances

Author:

Krasiński Adam1

Affiliation:

1. Faculty of Civil and Environmental Engineering , Gdansk University of Technology , Gdansk , Poland

Abstract

Abstract This article presents an engineering, empirical method of estimating the bearing capacity and settlement characteristics Q-s of screw displacement piles and columns, based on soil resistance encountered during the drilling to form piles/columns in the ground. The method was developed on the basis of correlation analyses of the test results of 24 piles made during the “DPDT-Auger” research project (Krasiński et al., 2022a). In the proposed method, the load capacity of a screw displacement pile is estimated using two main parameters of auger screwing resistance: torque MT and the number of auger rotations per depth unit nR . The method applies to piles and columns made with a standard screw displacement pile (SDP) auger and with the proprietary, prototype DPDT (displacement pile drilling tool) aguer, patented in Poland (2020). Based on the estimated ultimate capacities of the pile shaft and base, an approximate method of predicting the pile settlement characteristics Q-s was also proposed, using the transfer function method. This article describes a correlation procedure of field test results together with their statistical analysis and presents a method of estimating the pile-bearing capacity based on correlation results. A calculation example is also provided. The conclusion looks at the useful practical applications that could be found for the proposed method.

Publisher

Walter de Gruyter GmbH

Subject

Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference25 articles.

1. Basu P., Prezzi M. (2009): Design and Applications of Drilled Displacement (Screw) Piles. Publication FHWA/IN/JTRP-2009/28. West Lafayette: Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, http://docs.lib.purdue.edu/cgi/viewcontent.cgi.

2. Bottiau M. (2006): Recent evolutions in deep foundation technologies. Proceedings of the DFI/EFFC 10th Int. Conf. On Piling and Deep Foundations, Amsterdam.

3. Bustamante, M. and Gianeselli, L. (1998). Installation parameters and capacity of screwed piles. Proc. of Deep foundations on bored and auger piles, BAP III, Balkema, Rotterdam.

4. Gwizdała K. (2010): Fundamenty palowe. Tom 1: Technologie i obliczenia (Pile foundations. Tom 1: Technologies and calculations). Warszawa: PWN, 297.

5. Holeyman A.E. (2001): Screw piles – installation and design in stiff clay. Proc. of the Symp. on Screw Piles, Brussels, Belgium, Swets and Zeitlinger B.V., Lisse, 323.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3