Comment On Energy-Efficient Alternative for Different Types of Traditional Soil Binders

Author:

Jangde Himanshu1,Khan Farhan2

Affiliation:

1. Research Scholar , Rungta College of Engineering and Technology , Bhilai , India

2. Assistant Professor , Rungta College of Engineering and Technology , Bhilai , India

Abstract

Abstract Due to urban sprawl, the demand for land has increased for the purpose of construction. It is unlikely that soil available at different construction sites will be suitable for designed structures. For improving the load-bearing capacity of the soil, different soil binders are used, which are present in distinct states. In this review, the authors have collected details about various binders, which are generally used in the soil stabilization, and their effect as a binding agent on the soil. In this article, the authors tried to review different traditional binders. After studying various research articles, the authors found that lime, ground-granulated blast slag (GGBS) polypropylene, polyurethane grouting, and asphalt mix are frequently used binders. However, the authors also gathered information about the negative environmental impact of these traditional soil binders, which led to the need for alternatives to these commonly used soil binders. To diminish this issue, different alternate hydraulic and non-hydraulic binders are discussed. The authors found alternatives to cement and lime with the alkali-activated material consisting of Na2O and silica modulus and belite-calcium sulfoaluminate ferrite, which is also known as “Aether™.” According to the research, both alternatives emit 20–30% less CO2 into the environment and also improve the compressive strength of the soil. The various studies promotes bitumen modification. Incorporating 20-mesh crumb rubber and bio-oil into the bitumen reduces its viscosity and improves its fatigue value. When waste oil is mixed with asphalt, it revitalizes the bitumen, improves fatigue resistance, and increases compressive strength. The soil particles treated by Eko soil are held together by enzymes, which give them the same strength as cement. Apart from that, low-carbon binders such as basic oxygen furnace slag, bamboo fiber, enzyme-based soil treatment, zebu manure for stabilization, and lignin-contained biofuels and coproducts are discussed. Replacing these traditional binders helps with energy savings. All waste products are recycled, and energy is saved by not manufacturing traditional binders. Additionally, energy is saved, which is required to avoid the detrimental effects of these conventional binders, making them energy-efficient alternate binders. The authors also summarize the methods used, impacts, and changes that occur in soil properties after using substitutes in place of traditional binders. From the review, the authors determined that different binders have various properties in terms of chemical and physical compositions, and they show different variations in terms of strength when added to soil with low bearing capacity or poor stability.

Publisher

Walter de Gruyter GmbH

Subject

Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference97 articles.

1. Chang, I., et al., Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 2020. 24. DOI: 10.1016/j.trgeo.2020.100385

2. S. Control et al., “EC-5 EC-5,” no. November, pp.1–8, 2009.

3. Starry, T.E.K.a.D.W., Modern Soil Stabilization Techniques. 2007

4. army, u., Military Soils Engineering, D.o.t. Army, Editor. 4 June 1997: Washington, DC.

5. Soil Binders, s.w. services, Editor. 2008.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3