Compressive and Tensile Strength of Nano-clay Stabilised Soil Subjected to Repeated Freeze–Thaw Cycles

Author:

Roustaei Mahya1,Sabetraftar Mahdi2,Taherabadi Ehsan3,Bayat Meysam4ORCID

Affiliation:

1. Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta , Canada

2. Department of Civil Engineering, Qazvin Branch , Islamic Azad University , Qazvin , Iran

3. Department of Civil Engineering , Imam Khomeini International University , Qazvin , Iran

4. Department of Civil Engineering, Najafabad Branch , Islamic Azad University , Najafabad , Iran

Abstract

Abstract Improvement of the mechanical properties of clayey soils by additional elements to enhance the strength under numerous freezing and thawing cycles has been considered as a serious concern for engineering applications in cold regions. The objective of the current study is to investigate the effect of nano-clay as a stabiliser on the mechanical properties of clay. To this end, the clay specimens were prepared by adding various percentages of nano-clay ranging from 0.5% to 3% by dry weight of soil and were experimentally tested under the uniaxial compression and tensile splitting tests under different curing times (0, 7 and 28 days) after experiencing various freeze–thaw cycles ranging from 0 to 11. It can be concluded from the results that nano-clay particles may be used as a stabiliser in geotechnical applications to improve soil property. The results indicate that the optimum moisture content (OMC) of specimens increases and the maximum dry density (MDD) decreases with the increasing nano-clay content. The specimens containing about 1% nano-clay recorded maximum values of unconfined compressive strength (UCS) as well as tensile strength. For example, the addition 1% nano-clay increased the UCS and tensile values of clay specimens under the curing time of 28 days by 34% and 247%, respectively. In addition, the long-term durability of specimens against freeze–thaw cycles increases further with the addition of nano-clay content ranging from 2% to 3%.

Publisher

Walter de Gruyter GmbH

Subject

Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3