Modernized Resonant Column and Torsional Shearing Apparatus With Multipoint Contactless Displacement Detection System

Author:

Bujko Marcin1,Bocheńska Marta1,Srokosz Piotr1,Dyka Ireneusz1

Affiliation:

1. University of Warmia and Mazury in Olsztyn , Olsztyn , Poland

Abstract

Abstract In this study, a modification of resonant column/torsional shearing (RC/TS) apparatus was proposed to perform a qualitative analysis of a noncohesive soil specimen vibration during RC tests. An additional multipoint displacement detection system was installed in the RC/TS WF8500 device. In the new measuring system, 48 mini-magnets are attached to the side surface of a cylindrical soil specimen, creating a regular grid of measuring points. Around 48 Hall sensors (Honeywell SS495A1) are used to measure changes in the magnetic field strength due to the movement of the corresponding magnets on the surface of the specimen subjected to dynamic torque. The Hall sensor generates an analog signal that is proportional to the change in the magnetic field. The measurements are collected with a newly developed data acquisition system that consists of a set of analog-to-digital converters and a set of ARM (Advanced RISC (Reduced Instruction Sets Computing) Machine) microcontrollers. The measurement system is controlled with a dedicated software, ControlRec, developed by the authors. The measurements are taken synchronically with and independently from the standard RC test procedure. The new measuring technique allows to observe displacements of the 48 points on the specimens’ surface with over 4 times higher sampling rate than in the original measuring system. As a result, additional effects related to the mechanical wave propagation through soil specimen were observed (local disturbances in distribution of vibration amplitudes or significant displacements near the bottom end of the specimen, which is assumed to be fixed in the standard RC/TS results analysis), that could not be identified using the standard equipment of the device.

Publisher

Walter de Gruyter GmbH

Subject

Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3