Stemness specificity of epithelial cells – application of cell and tissue technology in regenerative medicine

Author:

Rojewska Magdalena1,Popis Małgorzata1,Jankowski Maurycy1,Bukowska Dorota2,Antosik Paweł2,Kempisty Bartosz134

Affiliation:

1. Department of Anatomy , Poznan University of Medical Science , Poznań , Poland

2. Veterinary Center , Nicolaus Copernicus University in Torun , Toruń , Poland

3. Department of Histology and Embryology , Poznan University of Medical Science , Poznań , Poland

4. Department of Obstetrics and Gynecology , University Hospital and Masaryk University , Brno , Czech Republic

Abstract

Abstract Stem cells are cells that have the potential to replicate and/or differentiate, becoming any tissue. This process could be theoretically repeated indefinitely and can be used to create or fix damaged parts any organ. There are many in vivo factors that cause stem cells to replicate and differentiate. Many of these interactions and mechanisms are still unknown. In vitro models have been successful in inducing stem cells to differentiate into the desired lineage using controlled methods. Recently, epithelial tissue has been successfully created using scaffolds on which stem cells are grown in vitro and then transplanted into the host. This transition creates significant problems. This is because in vitro -grown stem cells or stem cell-derived tissues are created in an isolated environment where virtually every aspect can be monitored and controlled. In vivo monitoring and controlling is significantly more difficult for a plethora of reasons. Cells in the body are constantly exposed to many signals and molecules which affect them. Many of the mechanisms behind these interactions and reactions are known but many others are not. As the corpus of knowledge grows, stem cells become closer to being applied in a clinical setting. In this paper, we review the current evidence on stem cell therapy in regenerative medicine and some of the challenges this field faces.

Publisher

Walter de Gruyter GmbH

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3