A Comparative Study of PSO, GWO, and HOA Algorithms for Maximum Power Point Tracking in Partially Shaded Photovoltaic Systems

Author:

Berttahar Fares1ORCID,Abdeddaim Sabrina1,Betka Achour1,Omar Charrouf1

Affiliation:

1. LGEB, University of Mohamed Khidar , Biskra , Algeria

Abstract

Abstract Solar energy harnessed through photovoltaic technology plays a crucial role in generating electrical energy. Maximising the power output of solar modules requires optimal solar radiation. However, challenges arise due to obstacles such as stationary objects, buildings, and sand-laden winds, resulting in multiple points of maximum power on the P–V curve. This problem requires the use of maximum power point tracking algorithms, especially in unstable climatic conditions and partial shading scenarios. In this study, we propose a comparative analysis of three MPPT methods: particle swarm optimisation (PSO), grey wolf optimisation (GWO) and Horse Herd Optimization Algorithm (HOA) under dynamic partial shading conditions. We evaluate the accuracy of these methods using Matlab / Simulink simulations. The results show that all three methods solve partial shading problems effectively and with high precision. Furthermore, the Horse Herd Optimization approach has superior tracking accuracy and faster convergence compared with the other proposed methods.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3