Affiliation:
1. Department of Pure Mathematics , University of Waterloo , Ontario , Canada
Abstract
Abstract
Let q be an integer greater than or equal to 2, and let S
q
(n)denote the sum of digits of n in base q.For
α
=
[
0
;
1
,
m
¯
]
,
m
≥
2
,
\alpha = \left[ {0;\overline {1,m} } \right],\,\,\,m \ge 2,
let S
α(n) denote the sum of digits in the Ostrowski α-representation of n. Let m
1,m
2 ≥ 2 be integers with
gcd
(
q
-
1
,
m
1
)
=
gcd
(
m
,
m
2
)
=
1
\gcd \left( {q - 1,{m_1}} \right) = \gcd \left( {m,{m_2}} \right) = 1
We prove that there exists δ> 0 such that for all integers r
1,r
2,
|
{
0
≤
n
<
N
:
S
q
(
n
)
≡
r
1
(
mod
m
1
)
,
S
α
(
n
)
≡
r
2
(
mod
m
2
)
}
|
=
N
m
1
m
2
+
0
(
N
1
-
δ
)
.
\matrix{ {\left| {\left\{ {0 \le n < N:{S_q}(n) \equiv {r_1}\left( {\bmod \,{m_1}} \right),\,\,{S_\alpha }(n) \equiv {r_2}\left( {\bmod \,{m_2}} \right)} \right\}} \right|} \cr { = {N \over {{m_1}{m_2}}} + 0\left( {{N^{1 - \delta }}} \right).} \cr }
The asymptotic relation implied by this equality was proved by Coquet, Rhin & Toffin and the equality was proved for the case
α
=
[
1
¯
]
\alpha = \left[ {\bar 1} \right]
by Spiegelhofer.
Reference23 articles.
1. [1] ALLOUCHE, J. P.—SHALLIT, J.: Automatic Sequences. Cambridge University Press, Cambridge, 2003.
2. [2] APOSTOL, T. M.: Modular Functions and Dirichlet Series in Number Theory. In: Graduate Texts in Mathematics Vol. 41 (2nd ed.), Springer-Verlag, Berlin, 1990.
3. [3] BARAT, G.—LIARDET, P.: Dynamical systems originated in the Ostrowski alpha-expansion, Ann. Univ. Sci. Budapest. Sect. Comput. 24, (2004), 133–184.
4. [4] BASSILY, N. L.—KÁTAI, I.: Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hungar. 68 (1995), no. 4, 353–361.
5. [5] BEREND, D.—KOLESNIK, G.: Joint distribution of completely q-additive functions in residue classes, J. Number Theory 160, (2016), 716–738,