A Review on Tribological Behaviour of 3D Printed Mechanical Components

Author:

Macovei Gheorghe1,Paleu Viorel1

Affiliation:

1. “Gheorghe Asachi” Technical University of Iași , Faculty of Mechanical Engineering , 59A Prof. D. Mangeron Blvd., 700050 , Iași , Romania

Abstract

Abstract Technologies such additive manufacturing are slowly becoming more and more present on the market, covering different areas of the industry due to its great potential. Even so, there are still many aspects which are unexplored or which can be improved. One of them being the study of the tribological proprieties for all these parts, which are produced through additive manufacturing methods, such as powder bed fusion, binder jetting, direct energy deposition, fused filament fabrication, material jetting, vat photopolymerization, and sheet lamination. The scope of this paper is to bring together the tribological proprieties for the 3D printed parts, and to have a critical analysis of these proprieties, in order to easily decide which printing method is suitable, depending of the working conditions of the printed component. In addition, this paper will describe the working principle for each technology, and the type of materials that are commonly used in the printing process. Depending of the printing method, the tribological proprieties vary greatly. For example, for the parts which are manufactured through powder bed fusion, it was found that the wear resistance is higher, and with a lower friction coefficient than for a part manufactured through traditional methods. In addition, for many printing methods, the produced part might require an additional step of treatment. This is the case with binder jetting, where infiltration and sintering are often used because the 3D-printed part is porous and weak. Some researchers found that the average friction coefficient measured for a steel-based part, treated with bronze infiltration, is comparable with the friction coefficient measured on a part made of the same material, manufactured through the direct energy deposition method. Of course, due to the physical limitations of the 3D printing method, the system will allow only the usage of a specific type or class of materials. One of such method is fused filament fabrication, where only thermoplastics are used. Along with vat photopolymerization and material jetting, these methods present comparable tribological proprieties.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3