Assessment of Skid Resistance of Asphalt Mixtures in Laboratory Conditions

Author:

Gardziejczyk W.1,Wasilewska M.1

Affiliation:

1. 1Faculty of Civil and Environment Engineering, Bialystok University of Technology, Bialystok, Poland

Abstract

AbstractThe aggregate applied for the wearing course has a significant influence on skid resistance of road surfaces. However, it is difficult to evaluate the behaviour of road surface in use on the basis of the Polished Stone Value (PSV) determined for the aggregate according to the so called ‘British method’. The British method, which is currently used in many countries, does not allow to determine the influence of neither the grain size of the aggregate nor the type of the wearing course on skid resistance of road surface. The present paper suggests a method for evaluation of the British Pendulum Number (BPN) for road surfaces in laboratory conditions. The authors assumed the BPN for polished slabs, made from asphalt mixtures, as the criterion. The index was measured with the British Pendulum Tester. The simulation of the process was conducted on research stand (called slab polisher) built at Bialystok University of Technology (BUT). The results of laboratory tests indicate that surfaces from asphalt concrete (AC) have slightly higher values of BPN in comparison with the values determined for surfaces made from stone mastic asphalt (SMA).

Publisher

Walter de Gruyter GmbH

Subject

Civil and Structural Engineering

Reference10 articles.

1. Pavement polishing - Development of a dedicated laboratorytest and its correlation with road results Direct;Do;Science Wear,2007

2. Characterization of road microtexture by means of image analysis Direct;Slimane;Science Wear,2008

3. Texture characteristics of unpolished and polished aggregate surface;Huang;Tribology International,2010

4. Prediction of road surface friction coefficient using only macroandmicrotexture measurements of Transportation Engineering;Ergun;Journal,2005

5. Physical model for the prediction of pavement polishing Direct;Do;Science Wear,2009

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3