Delaying Seed Germination and Improving Seedling Fixation: Lessons Learned During Science and Payload Verification Tests for Advanced Plant EXperiments (APEX) 02-1 in Space

Author:

Nakashima Jin1,Sparks J. Alan1,Carver John A.2,Stephens Shawn D.3,Kwon Taegun1,Blancaflor Elison B.1

Affiliation:

1. 1 Plant Biology Division, The Samuel Roberts Noble Foundation , Ardmore, OK United States

2. 2 Kennedy Space Center, Test and Operations Support Contract , Kennedy Space Center, FL United States

3. 3 Kennedy Space Center, Engineering Services Contract , Kennedy Space Center, FL United States

Abstract

ABSTRACT Here we report on the science verification test (SVT) and the payload verification test (PVT) that we conducted in preparation for experiments evaluating the impact of microgravity on Arabidopsis thaliana root development and cellular structure. Hardware used for these experiments was the Advanced Biological Research System (ABRS) and Kennedy Space Center (KSC) fixation tubes (KFTs). A simple procedure to delay seed germination prior to installation on ABRS involved the construction of a metal box with a single far-red (FR) light-emitting diode (LED). The exposure of Petri dishes containing seeds (ecotype Columbia) to FR light immediately after planting and maintaining Petri dishes in the dark prevented seed germination until exposure to white light on ABRS. Additional tests revealed that germination can be delayed for up to 10 weeks with FR light treatment. Seedlings fixed in KFTs preloaded with glutaraldehyde for subsequent microscopy studies were not adequately preserved. We suspected that poor fixation was due to the extended contact of glutaraldehyde with oxygen while stored on KFTs, which likely contributed to fixative oxidation. During PVT, minor modifications to address fixation problems encountered during SVT included storing KFTs with glutaraldehyde at 4o C in the dark, increasing glutaraldehyde concentration from 3% to 5%, and bubbling nitrogen (N2) gas over the glutaraldehyde solution prior to loading the KFTs. These changes led to improvements in the quality of microscopic images. Lessons learned from SVT and PVT allowed us to optimize some of the preflight protocols needed to successfully implement Advanced Plant EXperiments (APEX) in space.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3