Affiliation:
1. Military University of Aviation , Dęblin , Poland
2. University of Warmia and Mazury , Olsztyn , Poland
3. Koszalin University of Technology , Koszlin , Poland
Abstract
Abstract
The aim of this work is to explore, for the first time in Poland, the possibility of determining Earth’s crust movements from permanent observations at selected permanent stations using the GipsyX software for a period of 8 years (2011–2018) in the ITRF2014 reference frame. The data used in this work are from 15 Aktywna Sieć Geodezyjna (ASG)-EUPOS stations from 2011 to 2018, which are also European Permanent Network (EPN) stations. The stations Borowa Góra, Borowiec, Józefosław, Lamkówko, and Wroclaw are also International Global Navigation Satellite Systems (GNSS) Service (IGS) stations. Daily data, rinex files, for these stations have been made available for this work by the Main Office of Surveying and Cartography. The calculations were made using the GipsyX software in the ITRF14 reference frame. The tests performed have shown that daily solutions from 8-year-long time series give secular trends with an accuracy of 0.01 mm/yr. Our results suggest that there are small differences in horizontal and vertical velocities and in the accuracy estimated between our and EPN solutions. At some stations, for example, Łódź, the differences are much larger. The impact of additional GNSS observations on the accuracy of determination of horizontal and vertical movements of the Earth’s crust shows a submillimeter accuracy in computed coordinates of stations even at a relatively small time interval. It means that multi-GNSS Precise Point Positioning (PPP) processing can be used in the future for the estimation of geodynamic processes.
Reference49 articles.
1. Altamimi Z., Rebischung P., Métivier L., Collilieux X. (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, Journal of Geophysical Research: Solid Earth, Vol. 121, No. 8, 6109–6131.
2. Altamimi Z., Sillard P., Boucher C. (2007) CATREF software: Combination and analysis of terrestrial reference frames, LAREG Technical, Institut Géographique National, Paris, France, p. 47.
3. Blewitt G. (2011) Advances in Global Positioning System technology for geodynamics investigations, Wiley
4. Bock Y., Fang Peng., Genrich J., Hager B., Herring T., Hudnut K. (1993) Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements, Nature, Vol. 361, No. 6410, 337–340
5. Bosy J., Graszka W., Oruba A. (2010) ASG-EUPOS i podstawowa osnowa geodezyjna w Polsce, Biuletyn Wojskowej Akademii Technicznej, Vol. 59, 7–15.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献