Behavior of Broadcast Ionospheric-Delay Models from GPS, Beidou, and Galileo Systems

Author:

Farah Ashraf1

Affiliation:

1. Associate Professor, College of Engineering , Aswan University , Aswan , Egypt . Associate Professor, College of Engineering , King Saud University , Riyadh , KSA .

Abstract

Abstract The GNSS observations suffer from different types of errors that could affect the achieved positioning accuracy based on the receiver type used. Single-frequency receivers are widely used worldwide because of its low cost. The ionospheric delay considers the most challenging error for single-frequency GNSS observations. All satellite navigation systems, except GLONASS, are advising their users to correct for the ionospheric delay using a certain model. Those models’ coefficients are sent to users in the system’s navigation message. These models are different in their accuracy and behavior based on its foundation theory as well as the updating rate of their coefficients. The GPS uses Klobuchar model for mitigating the ionospheric delay. BeiDou system (BDS-2) adopts a slightly modified Klobuchar model that resembles GPS ICA (Ionospheric Correction Algorithm) with eight correction parameters but is formulated in a geographic coordinate system with different coefficients in origin and updating rate. Galileo system uses a different model (NeQuick model). This article investigates the behavior of the three models in correcting the ionospheric delay for three stations at different latitudes during 3 months of different states of ionospheric activity, comparing with International GNSS Service-Global Ionospheric Maps (IGS-GIMs). It is advised from this research’s outputs to use the GPS model for mitigating the ionospheric delay in low-latitude regions during the state of low-and medium-activity ionosphere. It is advised to use the BeiDou model for mitigating the ionospheric delay in mid-latitude regions during different states of ionospheric activity. It is advised to use the Galileo model for mitigating the ionospheric delay in high-latitude regions during different states of ionospheric activity. Also, the Galileo model is recommended for mitigating the ionospheric delay for low-latitude regions during the state of high-activity ionosphere.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3