Multidrug Efflux Pumps in Bacteria and Efflux Pump Inhibitors

Author:

Sreekantan Abhirami P.1,Rajan Pooja P.1,Mini Minsa1,Kumar Praveen1

Affiliation:

1. Department of Zoology , Government College for Women , Kerala , India

Abstract

Abstract Antimicrobial resistance is becoming a paramount health concern nowadays. The increasing drug resistance in microbes is due to improper medications or over usage of drugs. Bacteria develop many mechanisms to extrude the antibiotics entering the cell. The most prominent are the efflux pumps (EPs). EPs play a significant role in intrinsic and acquired bacterial resistance, mainly in Gram-negative bacteria. EPs may be unique to one substrate or transport several structurally different compounds (including multi-class antibiotics). These pumps are generally associated with multiple drug resistance (MDR). EPs are energized by a proton motive force and can pump a vast range of detergents, drugs, antibiotics and also β-lactams, which are impermeable to the cytoplasmic membrane. There are five leading efflux transporter families in the prokaryotic kingdom: MF (Major Facilitator), MATE (Multidrug And Toxic Efflux), RND (Resistance-Nodulation-Division), SMR (Small Multidrug Resistance) and ABC (ATP Binding Cassette). Apart from the ABC family, which utilizes ATP hydrolysis to drive the export of substrates, all other systems use the proton motive force as an energy source. Some molecules known as Efflux Pump Inhibitors (EPI) can inhibit EPs in Gram-positive and Gram-negative bacteria. EPIs can interfere with the efflux of antimicrobial agents, leading to an increase in the concentration of antibiotics inside the bacterium, thus killing it. Therefore, identifying new EPIs appears to be a promising strategy for countering antimicrobial drug resistance (AMR). This mini-review focuses on the major efflux transporters of the bacteria and the progress in identifying Efflux Pump Inhibitors.

Publisher

Walter de Gruyter GmbH

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3