Enhancing pitting corrosion inhibition of AISI 304 stainless steel using a green frankincense-modified ferric chloride solution

Author:

Masadeh Sami1ORCID,Al khateeb Shadi1ORCID,Ajlouni Almontaser Bellah1ORCID

Affiliation:

1. 1 Department of Materials Engineering, Al-Balqa Applied University , Al-Salt , Jordan

Abstract

Abstract To inhibit pitting corrosion of AISI 304 stainless steel (SS), the effect of different percentages of frankincense addition to a 0.5 M ferric chloride solution was explored in this work for the first time. The samples were investigated for pitting corrosion susceptibility via electrochemical noise (EN) tests, where the current and potential noises were recorded for 10000 seconds, and potentiodynamic polarization. The frequency domain of EN data was analyzed using power spectral density (PSD). Frankincense addition to the ferric chloride solution effectively reduced the pitting corrosion of AISI 304 SS. The pitting inhibition was concluded from the high fluctuations in current noises over the test period, its decreasing amplitude, the greater positive potential, the lower current values, and the lower spectral noise and noise resistances with increasing frankincense additions. Optical microscope images supported pitting inhibition with frankincense addition, where pits decreased in number per mm2 and size. A significant decrease in the pit size and pits mm−2 was observed with the 10 wt.% frankincense addition. It was attributed to the adsorption of the inhibitor on the stainless steel surface, inhibiting the adsorption of chloride ions. Additionally, frankincense addition reduced the corrosion current and increased the corrosion potential positively.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3