Research on the effect of temperature increase during flow forming without cooling on 6060 aluminum alloy

Author:

Gądek Tomasz1,Majewski Marcin12

Affiliation:

1. 1 Łukasiewicz Research Network – Poznań Institute of Technology 6 Ewarysta Estkowskiego St., 61-755 Poznan , Poland

2. 2 Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology , 1/15 Stefanowskiego Street, 90-924 Łódź , Poland

Abstract

Abstract This paper presents the results of flow forming tests for the 6060 aluminum alloy in the T5 heat treatment condition. The tests were conducted on a cylindrical mandrel using two forming rollers without the use of a cooling agent. The purpose of the study was to conduct two experiments. In both experiments, the final gap between the roller and the mandrel was designed to be the same. The impact of the deformation value on the change in the mechanical properties of the material with the simultaneous impact of the number of forming passes was determined. In addition, the effect of the elimination of a coolant on the process was analyzed. The material temperature rise caused by friction between a pair of working parts: the roller—and the workpiece—were examined with a thermal imaging camera. This paper presents the results of microhardness tests and analyzes the impact of the forming parameters on the strength properties of the alloy. Because the forming process was done without cooling, the impact of the temperature prevailing during the deformation process on the change in the strength of the alloy was studied and analyzed. The deformation zone in which intensive grain deformation took place was determined.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3