Hydration, Microstructure, and Properties of Fly Ash–Based Geopolymer: A Review

Author:

Khawaji Mohammad1

Affiliation:

1. 1 Department of Civil Engineering, College of Engineering, King Saud University , Riyadh , Saudi Arabia

Abstract

Abstract Geopolymers have gained attention as a potential eco-friendly alternative to Portland cement, primarily due to their reduced carbon dioxide emissions and the opportunity to repurpose industrial waste materials. Fly ash (FA), a byproduct of coal combustion, has been favored as a raw material for geopolymer concrete owing to its widespread availability and high concentrations of alumina and silica. The development and application of fly ash–based geopolymer concrete can contribute significantly to production of sustainable construction materials. An in-depth analysis of fly ash–based geopolymer concrete has been conducted to explore its potential as a substitute for traditional concrete. This review encompasses the underlying reaction mechanism, strength, long-term durability, and microstructural characteristics of geopolymer concrete. The present review paper shows that adding the optimal quantity of fly ash improves the performance of fly ash–based geopolymer when exposed to extreme durability conditions, as well as improving strength properties. The microstructural analysis shows that when fly ash is added, the microstructure of the concrete matrix would be dense and packed. However, challenges remain in adopting fly ash–based geopolymer concrete for large-scale construction projects, as the existing literature presents inconsistencies in the reported strength, durability, and test results. Further research is necessary to consolidate knowledge on the behavior and mechanism of fly ash–based geopolymer concrete and to ultimately provide comprehensive data to support its widespread implementation in the construction industry.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3