Performance of green high-strength concrete incorporating palm oil fuel ash in harsh environments

Author:

Zeyad Abdullah M.1,Johari Megat Azmi Megat2,Aliakbar Ali2,Magbool Hassan M.1,Majid Taksiah A.2,Aldahdooh Majed A. A.3

Affiliation:

1. Civil Engineering Department, College of Engineering, Jazan University , Jazan , Saudi Arabia

2. School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus , 14300 Nibong Tebal , Penang , Malaysia

3. International College of Engineering and Management Affiliated with University of Central Lancashire (UK) , Muscat , Sultanate of Oman

Abstract

Abstract The corrosion of steel reinforcement by chloride is commonly recognized as a key factor that contributes to the degradation of durability in reinforced concreae structures. Using supplementary cementitious materials, such as industrial and agricultural waste materials, usually enhances the impermeability of the concrete and its corrosion resistance, acid resistance, and sulfate resistance. This study’s primary purpose is to examine the effects of replacing ordinary Portland cement (OPC) with ultrafine palm oil fuel ash (U-POFA) on the corrosion resistant performance of high-strength green concrete (HSGC). There were four HSGC mixes tested; the first mix contained 100% OPC, while the other mixes replaced OPC mass with 20%, 40%, and 60% of U-POFA. The performance of all HSGC mixes containing U-POFA on workability, compressive strength, porosity, water absorption, impressed voltage test, and mass loss was investigated at 7, 28, 60, and 90 days. Adding U-POFA to mixes enhances their workability, compressive strength (CS), water absorption, and porosity in comparison with mixes that contain 100% OPC. The findings clearly portrayed that the utilization of U-POFA as a partial alternative for OPC significantly enhances the corrosion-resistant performance of the HSGC. In general, it is strongly advised that a high proportion of U-POFA be incorporated, totaling 60% of the OPC content. This recommendation is the result of its significance as an environmentally friendly and cost-effective green pozzolanic material. Hence, it could contribute to the superior durability performance of concrete structures, particularly in aggressive environmental exposures. Highlights The corrosion resistance performance of high-strength green concrete was investigated. Ultrafine palm oil fuel ash as a partial alternative of cement mass with 20%, 40%, and 60% was used. HSGC performance was evaluated in terms of workability, compressive strength, water absorption, porosity, impact stress testing, and mass loss.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3