Author:
Piskorski Ł.,Sarzała R.P.
Abstract
Abstract
In the present paper, the comprehensive fully self-consistent optical-electrical-thermal-recombination model is used to determine the optimal structure of the possible GaInNAs quantum-well (QW) tunnel-junction (TJ) vertical-cavity surface-emitting lasers (VCSELs) with single-fundamental-mode operation at 2.33 μm wavelength suited for carbon monoxide sensing applications. From among various considered structures, the diode laser with 4-μm TJ and two 6-nm Ga0.15In0.85N0.015As0.985/Ga0.327In0.673As0.71P0.29 QWs has the lowest threshold current and seems to be optimal for the above applications. Higher threshold currents are obtained for Ga0.15In0.85N0.015As0.985/Al0.138- Ga0.332In0.530As QW structures but the latter can be grown in reactors without P source which are used for fabrication of GaAs-based devices. Both the modelled VCSELs offer a very promising room temperature continuous wave performance and may represent an alternative choice to GaSb-based lasers.
Subject
Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献