Dynamics simulation studies on the electric city car with an electromechanical differential and the rear wheels drive

Author:

Kozłowski M.,Choromański W.

Abstract

Abstract Here we present one of the more complex models for studying the stability of driving an electric car with electromechanical differential systems. The purpose of simulation is to choose a structure of the control system for a velocity control on driven wheels (an algorithm of a differential) most appropriate for the driver. This type of goal is particularly important in the case of a disabled driver sitting in a wheelchair. The modeling takes into account both the mechanical and electric structure of the vehicle, and finally the human element - a simple model of human impact on the steer by a wire system. Modeling and simulation have used MBS package (SimMechanics). The results of the simulation have showed the best algorithms of an electromechanical differential for the velocity control of rear drive wheels: with setting a velocity difference or with an average velocity controller in the point A of the centre of a car front axle.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3