Synthesis, characterization and catalytic properties of SAPO-11 molecular sieve synthesized in hydrothermal media using di-isopropylamine as template

Author:

Chellappa T.,Costa M. Jose Fonseca,Nascimento W.A.,De Lima L. Ferreira,Bassan I. Almeida,Tavares M.,Fernandes V.J.,Menezes A.,Meira L. Guilherme,De Medeiros J. Telesforo Nóbrega,Nascimento R. Maribondo Do

Abstract

Abstract A microporous SAPO-11 Molecular sieve was successfully synthesized by the hydrothermal method, using a single agent, as an organic template: di-isopropylamine (DIPA). The obtained solid was calcined at 550◦C for three hours, after which the flow of nitrogen was exchanged for that of synthetic air and submitted for another ten hours of calcination, so as to remove the single agent: di-isopropylamine, which after the removal of the template could be observed by the high crystallization of the sample. Furthermore, the molecular sieve was characterized by XRD, SEM, TG-DTG and N2 adsorption desorption (BET analysis). The obtained catalyst proved to have a high potential catalytic activity and selectivity, through the obtained characterization results, exhibiting good hydrothermal stability. The catalytic performance of SAPO-11 was tested by the deactivation/regenerability of the coked sample, furthered by cracking of n-hexane reaction and high olefins selectivity was obtained.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3