An underwater spoiler on a warship: why, when and how?

Author:

Bouckaert Bruno

Abstract

Abstract There are a lot of energy saving devices for ships on the market, but few have seen wide adoption on naval ships, with one exception: the bulbous bow. The bulbous bow was developed for naval ships in the early 20th century and is now widespread on a variety of ship designs. Many have wondered if the effect of the bulbous bow — reducing the resistance of a ship by reducing the bow wave — could be replicated somehow at the stern — by reducing the stern wave. This is exactly what is done by a novel and patented energy saving device called Hull Vane®. Invented by Dutch hydrodynamicist Dr Peter van Oossanen for an America’s Cup sailing yacht in the early 21st century, research over the years has shown that this wing-shaped appendage works best on ships that combine a relatively high displacement with a relatively high top speed requirement — even if most sailing hours are done at half speed. Examples are certain offshore vessels, superyachts, patrol vessels and naval ships. On offshore patrol vessels, the resistance reduction from the Hull Vane® ranges typically from 10 to 20% over the entire useful speed range. In this paper, the working principles of the Hull Vane® will be described to give a better under-standing of the device. An overview will be given of the work carried out on naval ships and coastguard ships (25 to 142 m), based on Computational Fluid Dynamics studies, model tests and full-scale applications. The question ‘Why?’ will be answered by translating the hydrodynamic effects to concrete capability improvements for naval ships: a lower fuel consumption, a longer range, reduced signature, a higher top speed and improved seakeeping. The question ‘When?’ will zoom in on whether a Hull Vane® is something to be included in a newbuild or if it is something to be retrofitted to an existing ship. Finally the answer to the question ‘How?’ will explain the process of either integrating a Hull Vane® in a newbuild project or retrofitting it during a midlife upgrade of an existing ship.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3