Development of a computational pregnant female phantom and calculation of fetal dose during a photon breast radiotherapy

Author:

Kopacin Vjekoslav12,Kasabasic Mladen13,Faj Dario14,Hubert Marijke de Saint5,Galic Stipe6,Ivkovic Ana13,Majer Marija7,Brkic Hrvoje14

Affiliation:

1. Department of Biophysics and Radiology, Faculty of Medicine Osijek , Osijek , Croatia

2. Department of Diagnostic and Interventional Radiology, Osijek Clinical Hospital Centre , Osijek , Croatia

3. Department of Medical Physics, Osijek Clinical Hospital Centre , Osijek , Croatia

4. Department of Biophysics, Biology and Chemistry, Faculty of Dental Medicine and Health in Osijek , Osijek , Croatia

5. Unit Research in Dosimetric Applications, Belgian Nuclear Research Centre Mol , Belgium

6. Department of Medical Physics, University Clinical Hospital Mostar , Mostar , Bosnia and Herzegovina

7. Division of Materials Chemistry, Ruđer Bošković Institute , Zagreb , Croatia

Abstract

Abstract Background The incidence of carcinoma during pregnancy is reported to be 1:1000–1:1500 pregnancies with the breast carcinoma being the most commonly diagnosed. Since the fetus is most sensitive to ionizing radiation during the first two trimesters, there are mixed clinical opinions and no uniform guidelines on the use of radiotherapy during pregnancy. Within this study the pregnant female phantom in the second trimester, that can be used for radiotherapy treatment planning (as DICOM data), Monte Carlo simulations (as voxelized geometry) and experimental dosimetry utilizing 3D printing of the molds (as .STL files), was developed. Materials and methods The developed phantom is based on MRI images of a female patient in her 18th week of pregnancy and CT images after childbirth. Phantom was developed in such a manner that a pregnant female was scanned “in vivo” using MRI during pregnancy and CT after childbirth. For the treatment of left breast carcinoma, 3D conformal radiotherapy was used. The voxelized geometry of the phantom was used for Monte Carlo (MC) simulations using Monte Carlo N-Particle transport codeTM 6.2 (MCNP). Conclusions The modeled photon breast radiotherapy plan, applied to the phantom, indicated that the fetus dose is 59 mGy for 50 Gy prescribed to the breast. The results clearly indicate that only 9.5% of the fetal dose is caused by photons that are generated in the accelerator head through scattering and leakage, but the dominant component is scattered radiation from the patient’s body.

Publisher

Walter de Gruyter GmbH

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3