Verification of an optimizer algorithm by the beam delivery evaluation of intensity-modulated arc therapy plans

Author:

Pocza Tamas12,Szegedi Domonkos1,Major Tibor13,Pesznyak Csilla12

Affiliation:

1. Center of Radiotherapy, National Institute of Oncology , Budapest , Hungary

2. Institute of Nuclear Techniques, Budapest University of Technology and Economics , Budapest Hungary

3. Department of Oncology, Semmelweis University , Budapest , Hungary

Abstract

Abstract Background In the case of dynamic radiotherapy plans, the fractionation schemes can have dosimetric effects. Our goal was to define the effect of the fraction dose on the plan quality and the beam delivery. Materials and methods Treatment plans were created for 5 early-stage lung cancer patients with different dose schedules. The planned total dose was 60 Gy, fraction dose was 2 Gy, 3 Gy, 5 Gy, 12 Gy and 20 Gy. Additionally renormalized plans were created by changing the prescribed fraction dose after optimization. The dosimetric parameters and the beam delivery parameters were collected to define the plan quality and the complexity of the treatment plans. The accuracy of dose delivery was verified with dose measurements using electronic portal imaging device (EPID). Results The plan quality was independent from the used fractionation scheme. The fraction dose could be changed safely after the optimization, the delivery accuracy of the treatment plans with changed prescribed dose was not lower. According to EPID based measurements, the high fraction dose and dose rate caused the saturation of the detector, which lowered the gamma passing rate. The aperture complexity score, the gantry speed and the dose rate changes were not predicting factors for the gamma passing rate values. Conclusions The plan quality and the delivery accuracy are independent from the fraction dose, moreover the fraction dose can be changed safely after the dose optimization. The saturation effect of the EPID has to be considered when the action limits of the quality assurance system are defined.

Publisher

Walter de Gruyter GmbH

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3