Semi-supervised planning method for breast electronic tissue compensation treatments based on breast radius and separation

Author:

Podgorsak Alexander R.12,Kumaraswamy Lalith K.12

Affiliation:

1. State University of New York at Buffalo, Department of Medical Physics , Buffalo , New York , United States

2. Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine , Buffalo , New York , United States

Abstract

Abstract Background The aim of the study was to develop and assess a technique for the optimization of breast electronic tissue compensation (ECOMP) treatment plans based on the breast radius and separation. Materials and methods Ten ECOMP plans for 10 breast cancer patients delivered at our institute were collected for this work. Pre-treatment CT-simulation images were anonymized and input to a framework for estimation of the breast radius and separation for each axial slice. Optimal treatment fluence was estimated based on the breast radius and separation, and a total beam fluence map for both medial and lateral fields was generated. These maps were then imported into the Eclipse Treatment Planning System and used to calculate a dose distribution. The distribution was compared to the original treatment hand-optimized by a medical dosimetrist. An additional comparison was performed by generating plans assuming a single tissue penetration depth determined by averaging the breast radius and separation over the entire treatment volume. Comparisons between treatment plans used the dose homogeneity index (HI; lower number is better). Results HI was non-inferior between our algorithm (HI = 12.6) and the dosimetrist plans (HI = 9.9) (p-value > 0.05), and was superior than plans obtained using a single penetration depth (HI = 17.0) (p-value < 0.05) averaged over the 10 collected plans. Our semi-supervised algorithm takes approximately 20 seconds for treatment plan generation and runs with minimal user input, which compares favorably with the dosimetrist plans that can take up to 30 minutes of attention for full optimization. Conclusions This work indicates the potential clinical utility of a technique for the optimization of ECOMP breast treatments.

Publisher

Walter de Gruyter GmbH

Subject

Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3