Impact of AKT1 polymorphism on DNA damage, BTG2 expression, and risk of colorectal cancer development

Author:

Zubair Hina1,Khan Zahid1,Imran Muhammad1

Affiliation:

1. Biochemistry Section, Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan

Abstract

Abstract Background AKT, also called protein kinase B, is a serine-threonine kinase that functions as a mediator of PI3K-Akt-mTOR signaling pathway and plays an important role in an array of cellular processes. Many single nucleotide polymorphisms (SNP) in AKT gene have been observed to be associated with various types of cancers. In the current research the association of a functional SNP rs1130233 in AKT, depicting G to A transition, was studied with AKT activation, DNA damage, an early response B-cell translocation gene 2 (Btg2) expression and risk of colorectal cancer (CRC) development. Patients and methods A total 197 population-based controls and 200 CRC patients were genotyped for SNP rs1130233. AKT expression, activation and BTG2 expression were determined in GG, AG and AA genotype carriers. DNA damage was determined through comet assay. Results The heterozygous AG genotype (55.67%) was more prevalent in the local population compared to homozygous wild type GG (37.78%) and homozygous AA genotypes (6.55%). Moreover, AG and AA alleles were observed to be significant contributors (P = 0.01, OR = 1.80, CI = 1.18 to 2.74, and P = 0.001, OR = 5.00, CI = 1.90 to 13.18, respectively) in increasing the risk of CRC. The immunoblot analysis revealed that G to A transition decreased the expression and activation of AKT. Moreover, AG and AA genotypes of AKT1 rs1130233 showed a significant increase in DNA damage and Btg2 expression. Conclusions The data concludes that G to A substitution is a risk factor for CRC development involving a decrease in AKT expression and activation and increase in DNA damage.

Publisher

Walter de Gruyter GmbH

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3