Can stretch sensors measure knee range of motion in healthy adults?

Author:

Poomsalood Somruthai12,Muthumayandi Karthik1,Hambly Karen1

Affiliation:

1. School of Sport and Exercise Sciences, University of Kent, Chatham, Kent , UK

2. School of Allied Health Sciences, University of Phayao, Phayao , Thailand

Abstract

Abstract Study aim: There are currently limited methods available to access dynamic knee range of motion (ROM) during free-living activities. This type of method would be valuable for monitoring and progressing knee rehabilitation. Therefore, the aim of this study was to evaluate the functioning of stretch sensors for the measurement of knee ROM and to assess the level of the measurement error. Material and methods: Nine healthy participants were included in the study. Three stretch sensors (StretchSense™, Auckland, NZ) were attached on the participants’ right knees by Kinesiotape®. A Cybex dynamometer was used to standardise movement speed of the knee joint. Data was recorded through the StretchSense™ BLE application. Knee angles were obtained from the video clips recorded during the testing and were analysed by MaxTraq® 2D motion analysis software. The knee angles were then synchronised with the sensor capacitance through R programme. Results: Seven out of the nine participants presented with high coefficient of determination (R2) (>0.98) and low root mean square error (RMSE) (<5°) between the sensor capacitance and knee angle. Two participants did not confirm good relationship between capacitance and knee angle as they presented high RMSE (>5°). The equations generated from these 7 participants’ data were used individually to predict knee angles. Conclusions: The stretch sensors can be used to measure knee ROM in healthy adults during a passive, non-weight-bearing movement with a clinically acceptable level of error. Further research is needed to establish the validity and reliability of the methodology under different conditions before considered within a clinical setting.

Publisher

Walter de Gruyter GmbH

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible Wearable Joint Motion Sensor Based On Multi-Wire Displacement;2024 IEEE 7th International Conference on Soft Robotics (RoboSoft);2024-04-14

2. An IoT-Enabled Knee-Sleeve for Home Rehabilitation: A Pilot Study;E-Textiles 2023;2024-01-11

3. Textile-Sensing Wearable Systems for Continuous Motion Angle Estimation: A Systematic Review;International Journal of Human–Computer Interaction;2023-11-12

4. Development of Sensory Unit Using Single IMU Sensor for Knee Joint Movement;2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE);2023-08-25

5. Electronic textiles: New age of wearable technology for healthcare and fitness solutions;Materials Today Bio;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3