Synthesis and characterization of nanostructured molybdenum & tungsten carbide materials, and study of diffusion model

Author:

Covington Leroy1,Munirathinam Kamalesh1,Islam Akand1,Roberts Kenneth1

Affiliation:

1. Department of Chemical Engineering, North Carolina A&T State University, 1601 E Market St, NC 27411, USA

Abstract

Synthesis and characterization of nanostructured molybdenum & tungsten carbide materials, and study of diffusion model Powders of two molybdenum carbides (Mo2C and MoC1-x) and tungsten carbide (WC) were prepared by means of temperature programmed reaction (TPR) method. Mo2C and MoC1-x were synthesized by reacting MoO3 with a preselected molar ratio of methane/hydrogen and carbon monoxide/hydrogen gas mixtures respectively. WC was prepared using tungsten oxide (WO3) and a methane/hydrogen gas mixture. These carbides were ultrasonically dispersed in de-ionized water. Samples were characterized using room temperature x-ray diffraction and scanning microscopy. A kinetic diffusion model is also studied to determine diffusivities in solids where the diffusing species desorbs or reacts at the external surfaces, and where the diffusivity does not vary appreciably with concentrations. The method involves measuring the flux of the diffusive species into the solid under the influence of a temperature program.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on recent advances and progress in Mo2C@C: A suitable and stable electrocatalyst for HER;International Journal of Hydrogen Energy;2023-04

2. Tungsten Carbides;Ultra-High Temperature Materials IV;2022

3. Molybdenum–Tungsten Blue Nanoparticles as a Precursor for Ultrafine Binary Carbides;Nanomaterials;2021-03-17

4. Optimization of Process Parameters for the Synthesis of Mo2C on an Activated Carbon Matrix;11th International Symposium on High-Temperature Metallurgical Processing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3