Machines for Mechanical Mining of Hardly Workable and Abrasive Rocks

Author:

Bołoz Łukasz1ORCID,Kalukiewicz Antoni1

Affiliation:

1. AGH University of Science and Technology , Poland

Abstract

Abstract Mechanical mining is a widely used method for separating material from mined rock in the mining branch, tunnelling, road and construction industries. Depending on the mechanical properties of rocks, most often defined by uniaxial compressive strength, various machines and tools are applied. Apart from rock strength, the efficiency of the mining process is determined by abrasiveness, which affects the rate of tool abrasive wear. Currently, disc mining by static pressure or rear undercutting are the most developed methods. Undercutting can be supported by high pressure water jet or disk oscillation. Mining with drills also utilizes static pressure. In addition to discs, conical picks are applied; they are mounted on cutterheads. In underground mining and tunnelling, there is an increasing need to cut abrasive rocks with a strength of more than 120 MPa in places where explosive materials cannot be used. In the article, the recently applied and developed methods of cutting abrasive rocks characterized by high strength, such as copper, gold, tungsten or platinum ores and diamond deposits, have been presented. Next, the latest machines and machine systems used for their mining are reviewed. Leaders in the mining machinery industry, such as Joy (Komatsu), Epiroc (Atlas Copco), Sandvik and Aker Wirth are developing proprietary designs of cutting machines based on both well-known and completely new ideas.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3