Uncertainties in Clear-Sky Solar Irradiance Modeling Induced by the Limited Availability of the Atmospheric Parameters

Author:

Carstea Emil1,Paulescu Marius2

Affiliation:

1. 1 National Institute of Research and Development for Optoelectronics , Atomistilor 409, 077125 , Magurele , Romania

2. 2 Faculty of Physics , West University of Timisoara , V Parvan 4, 300223 , Timisoara , Romania

Abstract

Abstract In the recent years, great progress has been made in developing terrestrial and satellite-based networks for the measurement of atmospheric parameters, which serve as inputs in clear sky parametric models. However, some parameters may still be missing from the model input due to small temporal sampling or lack of in situ data. This paper presents a case study on the accuracy of the clear-sky solar irradiance estimation by a parametric model, when the availability of inputs is limited. The study was conducted with high-quality radiometric and atmospheric data recorded by the INOE-Magurele station, Romania. Seven different scenarios were studied. In each scenario the clear-sky solar irradiance model was run assuming that certain parameters are missing from the input. The results quantitatively confirm the dominant role of aerosols in establishing the accuracy of solar irradiance estimation under clear sky conditions. The unavailability of the measured Ångström turbidity coefficient may lead to a twofold/threefold increase in the uncertainty of direct-normal/diffuse solar irradiance estimation.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3