Affiliation:
1. Laboratory of Instrumental Chemical Analysis , Institute for Nanomaterials, Advanced Technologies and Innovations , Technical University of Liberec , Bendlova 1409/7, 461 17 Liberec 1, Czech Republic
Abstract
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a common part of the environment where they come from burning fossil fuels (through an incomplete combustion process). From a toxicological point of view, PAHs are considered to be carcinogens with a mutagenic and teratogenic effect. On the other hand, ferrates are generally believed to be the ideal chemical agent for water treatment due to their strong oxidation potential. Herein, the efficiency of degradation of PAHs (with the special emphasis on B[a]P) by ferrates under laboratory conditions was studied. The formation of degradation products was also considered. For this, two types of ferrates were used and both of them efficiently degraded B[a]P. When comparing ferrates that were bought from a Czech and USA company, no significant changes in terms of B[a]P degradability were observed. It was determined that the degradation efficiency of PAHs by ferrates was dependent on their molecular weight. Two and three cyclic PAHs have been completely degraded within 30 minutes, whereas five (and more) cyclic PAHs, only partially. The results obtained with ferrates were compared to the ones obtained with a classical oxidizing agent - KMnO4. In a qualitative test to detect degradation products of PAHs, two were identified, namely fluoren-9-one derived from fluorene and acentaphthylene, formed from acenaphthene.
Subject
Environmental Chemistry,Environmental Engineering
Reference53 articles.
1. [1] Vo-Dinh T, Fetzer J, Campiglia AD. Monitoring and characterization of polyaromatic compounds in the environment. Talanta. 1998;47:943-69. DOI: 10.1016/S0039-9140(98)00162-3.
2. [2] US EPA O. Resources and Guidance Documents for Compliance Monitoring. US EPA. 2013. Available from: https://www.epa.gov/compliance/resources-and-guidance-documents-compliance-monitoring.
3. [3] Council Directive 75/440/EEC. European Environment Agency. Available from: https://www.eea.europa.eu/policy-documents/council-directive-75-440-eec.
4. [4] Council Directive 79/869/EEC. Available from: http://rod.eionet.europa.eu/instruments/213.
5. [5] Council Directive 80/778/EEC. Available from: https://rod.eionet.europa.eu/instruments/218.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献