Electrical Conductivity and pH in Surface Water as Tool for Identification of Chemical Diversity

Author:

Potapowicz Joanna1,Szumińska Danuta2,Szopińska Małgorzata3,Czapiewski Sebastian2,Polkowska Żaneta1

Affiliation:

1. Department of Analytical Chemistry, Faculty of Chemistry , Gdansk University of Technology , ul. G. Narutowicza 11/12, 80-233 Gdańsk , Poland

2. Institute of Geography , Kazimierz Wielki University , pl. Kościelecki 8, 85-033 , Bydgoszcz , Poland

3. Department of Water and Waste Water Technology, Faculty of Civil and Environmental Engineering , Gdansk University of Technology , ul. G. Narutowicza 11/12, Gdańsk 80-233 , Poland

Abstract

Abstract In the present study, the creeks and lakes located at the western shore of Admiralty Bay were analysed. The impact of various sources of water supply was considered, based on the parameters of temperature, pH and specific electrolytic conductivity (SEC 25). All measurements were conducted during a field campaign in January–February 2017. A multivariate dataset was also created and a biplot of SEC 25 and pH of the investigated waters was performed. The average temperatures of the investigated waters were 0.10-8.10 °C. The pH values indicate that most of the water environments of the analysed area are slightly acidic to alkaline (5.26–8.50) with two exceptions: Siodlo II Creek (9.26) and Petrified Forest Creek (8.95), which are characterised by greater alkalinity. At the measurement points closest to the Baranowski Glacier and Ecology Glacier, SEC 25 values were the lowest (26.8–61.1 µS·cm–1), while the remaining values ranged from 79.0 to 382 µS·cm–1 for the whole studied area. Based on the results it is concluded that the periodic intensive inflow of ablation waters, combined with morphological changes in the glacier front, causes a significant variability in the outflow network, creating the conditions for changes in basic physicochemical parameters. Moreover, it is observed that local depressions in the terrain form sedimentation traps in which, alongside fine-grained deposits, compounds can accumulate that originate from in situ sedimentation and that are also associated with surface runoff from the melting of snow cover, buried ice and permafrost.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3