Affiliation:
1. Jiangsu University of Science and Technology , China
Abstract
Abstract
Pollution of the marine environment by ship garbage is an urgent problem to be solved at home and abroad. The ship kitchen garbage vacuum collection system is a new environmental protection scheme for garbage disposal. It has many advantages, such as using a pipeline instead of manual operation, creating high-level sanitary conditions, realising completely closed garbage collection and transportation, eliminating cross-pollution, saving space and so on. In this paper, the system is modelled, and the calculation of pipeline pressure loss, the vacuum degree of the vacuum tank and the energy consumption of the system are briefly introduced. In order to reduce the energy consumption, an algorithm for the emptying and discharging port is presented. In order to solve the problem of optimising relevant parameters, the vacuum transport mechanism of garbage is studied based on an optimisation model of the pipe network, and the experimental platform of a simulation device is set up. In engineering, this is of great significance to the design of cruise ship garbage collection and treatment systems and the development of supporting technology.
Subject
Mechanical Engineering,Ocean Engineering
Reference20 articles.
1. 1. Chen J., et al. (2015): Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupling method. Powder Technology, 275, 182-187.10.1016/j.powtec.2014.12.057
2. 2. Du, J.,Bansal, P.,Huang, B. (2012): Simulation model of a greenhouse with a heat-pipe heating system. Applied Energy, 93(C), 268-276.10.1016/j.apenergy.2011.12.069
3. 3. Du J., Cai Z.,Zhang Y. (2018): Simulation and experimental study of SCR injection system. Polish Maritime Research Special Issue 2018 S2(98) 2018 Vol. 25, 49-55.
4. 4. Du J., Li R., Wu X., Zhang Y. (2018): Study on optimization simulation of SCR denitration system for marine diesel engine. Polish Maritime Research Special Issue 2018 S3(99) 2018 Vol. 25, 13-21.
5. 5. Du, J., Li, R., Wang, H., Wu, X. (2019): Environmental Study on Supercritical CO2 Extraction of Nanocrystalline. Ekoloji, 107(28), 3169-3175.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献