A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines

Author:

Zhao Rui1,Xu Leping1,Su Xiangwen2,Feng Shiquan3,Li Changxiong1,Tan Qinming1,Wang Zhongcheng1

Affiliation:

1. Merchant Marine College , Shanghai Maritime University , China

2. CSSC-MES Diesel Co. Ltd , Shanghai , China

3. School of Automotive Engineering, Changshu Institute of Technology , Suzhou , China

Abstract

Abstract Maritime shipping is a key component of the global economy, representing 80–90% of international trade. To deal with the energy crisis and marine environmental pollution, hydrogen-natural gas-diesel tri-fuel engines have become an attractive option for use in the maritime industry. In this study, numerical simulations and experimental tests were used to evaluate the effects of different hydrogen ratios on the combustion and emissions from these engines. The results show that, in terms of combustion performance, as the hydrogen proportion increases, the combustion ignition delay time in the cylinder decreases and the laminar flame speed increases. The pressure and temperature in the cylinder increase and the temperature field distribution expands more rapidly with a higher hydrogen ratio. This means that the tri-fuel engine (H2+CH4+Diesel) has a faster response and better power performance than the dual-fuel engine (CH4+Diesel). In terms of emission performance, as the hydrogen proportion increases, the NO emissions increase, and CO and CO2 emissions decrease. If factors such as methane escape into the atmosphere from the engine are considered, the contribution of marine tri-fuel engines to reducing ship exhaust emissions will be even more significant. Therefore, this study shows that marine hydrogen-natural gas-diesel tri-fuel engines have significant application and research prospects.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3