Investigations of the Emission Characteristics of a Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously on Liquid and Gaseous Fuels

Author:

Serbin Serhiy1,Diasamidze Badri1,Gorbov Viktor1,Kowalski Jerzy2

Affiliation:

1. Admiral Makarov National University of Shipbuilding , Ukraine

2. Gdańsk University of Technology , Poland

Abstract

Abstract This study is dedicated to investigations of the working process in a dual-fuel low-emission combustion chamber for a floating vessel’s gas turbine. As the object of the research, a low-emission gas turbine combustion chamber with partial premixing of fuel and air inside the outer and inner radial-axial swirls was chosen. The method of the research is based on the numerical solution of the system of differential equations which represent the physical process of mass and energy conservation and transformations and species transport for a multi-component chemically reactive turbulent system, considering nitrogen oxides formation and a discrete ordinates model of radiation. The chemistry kinetics is presented by the 6-step mechanism of combustion. Seven fuel supply operating modes, varying from 100% gaseous fuel to 100% liquid fuel, have been analysed. This analysis has revealed the possibility of the application of computational fluid dynamics for problems of dual-fuel combustion chambers for the design of a floating vessel’s gas turbine. Moreover, the study has shown the possibility of working in different transitional gaseous and liquid fuel supply modes, as they satisfy modern ecological requirements. The dependencies of the averaged temperature, NO, and CO concentrations along the length of the low-emission gas turbine combustion chamber for different cases of fuel supply are presented. Depending on the different operating modes, the calculated emission of nitrogen oxides NO and carbon monoxide CO at the outlet cross-section of a flame tube are different, but, they lie in the ranges of 31‒50 and 23‒24 mg/nm3 on the peak of 100% liquid fuel supply mode. At operating modes where a gaseous fuel supply prevails, nitrogen oxide NO and carbon monoxide CO emissions lie in the ranges of 1.2‒4.0 and 0.04‒18 mg/nm3 respectively.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3