Simulation Tests of a Drive Shaft and Propeller Control Subsystem for a Fast Boat

Author:

Grządziela Andrzej1ORCID,Hożyń Stanisław1ORCID

Affiliation:

1. Polish Naval Academy , Gdynia , Poland

Abstract

Abstract This paper presents an analysis of the acceleration of a fast boat using a simulation model. Mathematical equations of ship motion dynamics with two types of propeller capabilities are developed using MATLAB and Simulink as simulation tools. The equations are extended to include the acting thrust, resistance, propeller’s performance curves, and the PID governor curve for the acceleration manoeuvre. The application models the dynamic differential equations representing the vessel dynamics in one degree of freedom. MATLAB code was used to develop the ship acceleration as a multibody system. Modules of hydrodynamic forces, resistance, moments, and propeller performances were implemented to simulate the ship manoeuvring process. A comparison of the results for the boat’s propulsion performance with two different propellers and the characteristics of the PID governor, which controls the fuel dose in the gas turbines, was carried out. We present a summary including a comparative analysis of the results for the boat dynamics with and without the PID governor. The results obtained here confirm significant discrepancies between the results of numerical simulations with and without the PID governor.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3