Affiliation:
1. Merchant Marine College , Shanghai Maritime University , China
Abstract
Abstract
Multi-energy hybrid ships are compatible with multiple forms of new energy, and have become one of the most important directions for future developments in this field. A propulsion inverter is an important component of a hybrid DC electrical system, and its reliability has great significance in terms of safe navigation of the ship. A fault diagnosis method based on one-dimensional convolutional neural network (CNN) is proposed that considers the mutual influence between an inverter fault and a limited ship power grid. A tiled voltage reduction method is used for one-to-one correspondence between the inverter output voltage and switching combinations, followed by a combination of a global average pooling layer and a fully connected layer to reduce the model overfitting problem. Finally, fault diagnosis is verified by a Softmax layer with good anti-interference performance and accuracy.
Subject
Mechanical Engineering,Ocean Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献