Cabin Placement Layout Optimisation Based on Systematic Layout Planning and Genetic Algorithm

Author:

Su Shaojuan1,Zheng Yasai1,Xu Jinan2,Wang Tianlin1

Affiliation:

1. Naval Architecture and Ocean Engineering College , Dalian Maritime University , China

2. Dalian Shipping College , China

Abstract

Abstract Cabin placement layout is an important part of ship cabin layout design. A good cabin placement layout can improve the efficiency of the ship’s cabin arrangement. However, optimisation of the layout of cabin placement is not widely studied and more often relies on the experience of the staff. Thus, a novel methodology combining systematic layout planning and a genetic algorithm to optimise the cabin placement is presented in this paper. First key elements are converted by a systematic planning method that is often applied in factory layout, and a preliminary cabin placement layout model is established according to these key elements. Then the circulation strength and adjacency strength are taken as sub-objectives to establish a mathematical model, and an improved genetic algorithm is used to optimise the model. The result of the optimisation is compared with the initial schemes to verify the validity of the algorithm. Finally, the human factors are introduced according to the actual situation. The AHP method is used to select the layout scheme of the cabin that is most likely to be applied in the actual cabin layout.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Irregular Warehouse Layout Based on Optimised Genetic Algorithm;Promet - Traffic&Transportation;2024-04-30

2. A Study on Improving the Efficiency of Cruise Ship Cabin Space Layout Based on Multivariate Statistical Analysis;Applied Mathematics and Nonlinear Sciences;2024-01-01

3. Optimal Design Model of High-Density Urban Building Layout Based on Improved Genetic Algorithm;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

4. Interactive ship cabin layout optimization;Ocean Engineering;2023-02

5. Research on design and optimization of green warehouse system based on case analysis;Journal of Cleaner Production;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3