Dynamic Modelling and Experimental Analysis of an Offshore Crane Payload Positioning System with a Parallel Cable-Driven Method

Author:

Ren Zhaopeng1,Huang Zhe1ORCID,Zhao Tingqi1,Wang Shenghai12,Sun Yuqing12,Chen Haiquan12,Fang Nan1ORCID

Affiliation:

1. Marine Engineering College , Dalian Maritime University , Dalian , China

2. National Center for International Research of Subsea Engineering Technology and Equipment , Dalian Maritime University , Dalian , China

Abstract

Abstract The violent swinging motion of a payload imposes significant safety problems for the operation of offshore ship-mounted cranes (offshore cranes). We therefore propose a stable experimental hoisting platform for an offshore crane payload positioning system with a parallel cable-driven method (PP-PCDM), and an adaptive cable-drive anti-swing tension (ACAT) control method based on the PP-PCDM is developed to resolve the problem of swinging of the payload by limiting its spatial position. The PP-PCDM enables synchronous tracking of the movement of the payload when the crane is working. When the payload deviates from a stable state due to an external disturbance, the anti-swing cables are immediately retracted or released based on the feedback signal. The spatial position of the payload is then limited by adjusting the length and tension of the parallel cables until the payload appears stationary from the perspective of the ship’s deck. Operational safety and efficiency is substantially improved, and the proposed PP-PCDM structure and ACAT control method can be applied to a variety of different types of cranes. The results of simulations and physical experiments show that the anti-swing effect exceeds 89.86%. The PP-PCDM enables excellent performance of synchronous tracking and hoisting assistance, and ensures that the rated lifting weight of the offshore crane is not affected.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3