Monitoring the Performance of a Ship’s Main Engine Based on Big Data Technology

Author:

Liang Meng1ORCID,Chen Mingzhi2

Affiliation:

1. Shanghai Dianji University , Business School , Shanghai , China

2. Shanghai Maritime University , Merchant Marine College and Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency , China

Abstract

Abstract Under the recent background of ‘Green Shipping’ and rising fuel prices, it is very important to reduce the fuel consumption rate of ships, which is directly affected by the performance of the main engine. A reasonable maintenance schedule can optimise the performance of the main engine. However, a traditional maintenance schedule is based on the navigation distance and time, ignoring many other factors, such as a harsh working environments and frequently changing operating conditions, which will lead to faster performance degradation. In this study, a real-time evaluation method combing big data of ship energy efficiency with physics-based analysis is proposed to judge the degradation of main engine performance and assist in determining the maintenance schedule. Firstly, based on the developed ship energy efficiency big data platform, the distribution statistics and comparison of different operating states are carried out. Gaussian mixture model (GMM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to cluster the data and the high-density data areas are obtained as the analysis points. Then, the data of the analysis points are polynomial fitted, by the least square method, to obtain the propulsion characteristics curves, load characteristic curves, and speed characteristic curves, which can be used to observe the performance degradation of the main engine. The results show that this method can effectively monitor the degradation degree of the main engine performance, and is of great significance to fuel efficiency improvements and greenhouse gas (GHG) emissions reduction.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3