Detection of Wavy Sea Surface Oil-Derivative Contamination with Forward Specular High-Frequency Scattering

Author:

Pogorzelski Stanisław1,Rochowski Paweł1,Grzegorczyk Maciej1,Linde Bogumił B. J.1,Skrodzka Ewa2,Bielasiewicz Łukasz3

Affiliation:

1. Institute of Experimental Physics , University of Gdańsk , Poland

2. Faculty of Physics , Institute of Acoustics , A. Mickiewicz University , Poland

3. INFO-EKO Design-Consulting Office , Poland

Abstract

Abstract A spectrum of low-frequency (20–30 Hz) amplitude fluctuations of the ultrasonic (10 MHz) signal specularly scattered from water surfaces covered with monomolecular and thicker crude oil origin films of well-defined, oceanographically relevant viscoelastic properties was examined in laboratory and at-sea conditions. The relationship between the surface water wave (30 Hz) damping coefficient and the oil layer thickness was established, and compared to the one predicted by the classical Stokes theory. The depression of the spectral energy density of wind-driven waves by surface films was inferred from the ratio of acoustic signal fluctuations spectra with/without films, and compared to that resulting from the Marangoni damping theory applicable to monolayers of particular surface viscoelasticity. The agreement between the theory and experimental data was satisfactory. As shown in at-sea experiments performed with a free-floating, buoy-like acoustic system, and an artificial oil slick spread over the Baltic Sea surface, the film’s rheological surface properties can be recovered from acoustic surface probing, as well as oil spill edge detection. Simultaneous statistical analyses of the scattered signal amplitude distribution parameters turned out to be unequivocally related to the oil substance fraction weight, oil layer thickness, and the form of oil contamination.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3