Blockchain-Enabled Transfer Learning for Vulnerability Detection and Mitigation in Maritime Logistics

Author:

Priya J Chandra1ORCID,Rudzki Krzysztof2ORCID,Nguyen Xuan Huong3ORCID,Nguyen Hoang Phuong4,Chotechuang Naruphun5,Pham Nguyen Dang Khoa6ORCID

Affiliation:

1. Department of Computer Science and Engineering , Mepco Schenk Engineering College , Sivakasi , India

2. Faculty of Marine Engineering , Gdynia Maritime University , Gdansk , Poland

3. Nguyen Tat Thanh University , Ho Chi Minh City , Viet Nam

4. Academy of Politics Region II , Ho Chi Minh City , Viet Nam , Viet Nam

5. Faculty of International Maritime Studies , Kasetsart University , Sri Racha Campus , Chonburi , Thailand

6. PATET Research Group , Ho Chi Minh City University of Transport , Ho Chi Minh City , Viet Nam

Abstract

Abstract With the increasing demand for efficient maritime logistic management, industries are striving to develop automation software. However, collecting data for analytics from diverse sources like shipping routes, weather conditions, historical incidents, and cargo specifications has become a challenging task in the distribution environment. This challenge gives rise to the possibility of faulty products and traditional testing techniques fall short of achieving optimal performance. To address this issue, we propose a novel decentralised software system based on Transfer Learning and blockchain technology named as BETL (Blockchain -Enabled Transfer Learning). Our proposed system aims to automatically detect and prevent vulnerabilities in maritime operational data by harnessing the power of transfer learning and smart contract-driven blockchain. The vulnerability detection process is automated and does not rely on manually written rules. We introduce a non-vulnerability score range map for the effective classification of operational factors. Additionally, to ensure efficient storage over the blockchain, we integrate an InterPlanetary File System (IPFS). To demonstrate the effectiveness of transfer learning and blockchain integration for secure logistic management, we conduct a testbed-based experiment. The results show that this approach can achieve high precision (98.00%), detection rate (98.98%), accuracy (97.90%), and F-score (98.98), which highlights its benefits in enhancing the safety and reliability of maritime logistics processes. Additionally, the computational time of BETL (the proposed approach) was improved by 18.9% compared to standard transfer learning.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3