1. Abdemoula, A. K. (2015). Bank Credit Risk Analysis with K-Nearest-Neighbor Classifier: Case of Tunisian Banks. Accounting and Management Information Systems, 14(1), 79-106.
2. Akcura, K., & Chhibber, A. (2018). Design and Comparison of Data Mining Techniques for Predicting Probability of Default on a Loan. Retrieved from https://www.researchgate.net/profile/Korhan_Akcura2/publication/335173357_Design_and_Comparison_of_Data_Mining_Techniques_for_Predicting_Probability_of_Default_on_a_Loan/links/5d54a79d92851c93b630b8be/Design-and-Comparison-of-Data-Mining-Techniques-for-Pr.
3. Bayraci, S., & Susuz, O. (2019). A Deep Neural Network (DNN) based Classification Model in Application to Loan Default Prediction. Theoretical and Applied Economics, XXV(4(621)), 75-84.
4. Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). Smote: synthetic minority over- sampling technique. Journal Of Artificial Intelligence Research, 16, 321-357. doi:DOI: 10.1613/jair.953.10.1613/jair.953
5. Çığşar, B., & Ünal, D. (2019). Comparison of Data Mining Classification Algorithms Determining the Default Risk. Scientific Programming, 1-8.10.1155/2019/8706505