Sustainable intensification of agricultural production: a review of four soil amendments

Author:

Keiblinger Katharina Maria1,Kral Rosana Maria2

Affiliation:

1. University of Natural Resources and Life Sciences Vienna, Austria , Institute of Soil Research , Peter-Jordan-Straße 82, 1190 Vienna , Austria

2. University of Natural Resources and Life Sciences Vienna, Austria , Centre for Development Research , Peter-Jordan-Straße 82, 1190 Vienna , Austria

Abstract

Summary Dwindling natural resources, growing population pressure, climate change, and degraded soils threaten agricultural production. In order to feed the growing world population, we have to develop strategies to sustainably intensify current agricultural production while reducing the adverse effects of agriculture. Currently, a number of amendments have come into focus for improving structure and fertility of soils. Zeolites, biochar (BC), lime, and nitrification inhibitors (NIs) are reviewed for their properties. Zeolites and BC share many characteristics, such as a high cation exchange capacity (CEC), high specific surface area, and high porosity. Lime, on the other hand, works above all through its buffering capacity and can improve aggregate stability. Although the latter amendments change soil physicochemical characteristics, NIs do not act on soil properties but constrain a chemical/enzymatic reaction directly. These amendments are potential strategies to mitigate ongoing soil degradation and to secure soil fertility, under the global challenges. While the ecological effects of these soil amendments are studied intensively, the extent to which they can contribute to sustainable intensification is not fully explored. We want to contribute to the debate by providing an overview that seeks to integrate ecological evidence with the agronomic perspective.

Publisher

Walter de Gruyter GmbH

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3