Structure and physical properties of biomembranes and model membranes

Author:

Hianik T.

Abstract

Structure and physical properties of biomembranes and model membranesBiomembranes belong to the most important structures of the cell and the cell organels. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equillibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the biomembranes is also due to their unique physical properties. From physical point of view the biomembranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid scrystal of smectic type. The biomembranes are characterized by anisotropy of structural and physical properties. The complex structure of biomembranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of biomembranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes (BLM), supported bilayer lipid membranes (sBLM) and liposomes are most known. This work is focused on the introduction into the "physical word" of the biomembranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the biomembranes and their models areare stepwise presented. The most focus is on the properties of lipid monolayers, BLM, sBLM and liposomes that were most detailed studied. This contribution has tutorial character that may be usefull for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be usefull also for specialists working in the field of biomembranes and model membranes.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference315 articles.

1. Thermodynamics of;Evans;Mechanics,1980

2. Essential Biology Publishing New York;Alberts;Cell,1998

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resonant Excitation of Acoustic Vibrations of Spherical Thin Films by Electromagnetic Waves;Journal of Communications Technology and Electronics;2023-10

2. Resonant excitation of acoustic vibrations spherical thin films by electromagnetic waves.;Радиотехника и электроника;2023-10-01

3. Stable layers of pure myelin basic protein (MBP): Structure, morphology and hysteresis behaviors;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2023-04

4. Electrophysiological Characterization of Transport Processes through Protein Nanopores;2021 International Conference on e-Health and Bioengineering (EHB);2021-11-18

5. Liquid crystalline phases of linear alkylbenzene sulphonate in spray-dried detergent powders studied by small-angle X-ray scattering, TEM, and ATR-IR spectroscopy;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3