Abstract
Statistical physics of hard optimization problemsOptimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.
Subject
General Physics and Astronomy
Reference127 articles.
1. Random free energies in spin - glasses Physique;Mézard,1985
2. The capacity of low - density parity - check codes under message - passing decoding Inform Theory;Richardson;IEEE Trans,2001
3. Graph optimisation problems nad the potts glass A;Kanter;Math Gen,1987
4. Replicas optimization Physique;Mézard,1985
5. Exhaustive enumeration unveils clustering and freezing in random sat;John Ardelius;Phys Rev,2008
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献