Deep Learning Based Melanoma Diagnosis Identification

Author:

Duan Gaole1,Wang Changyuan2

Affiliation:

1. 1 School of Computer Science and Engineering , Xi'an Technological University , Xi’an , China

2. 2 School of Computer Science and Engineering , Xi'an Technological University , Xi’an , China

Abstract

Abstract Malignant melanoma is considered to be one of the deadliest types of skin cancer, and it is responsible for the death of a large number of people worldwide. However, distinguishing whether melanoma is benign or malignant has been a challenging task. Many Computer Aided Diagnosis and Detection Systems have been developed in the past for this task. This paper presents a deep learning framework based approach for melanoma diagnosis and recognition. In the proposed method, the original skin mirror image is first preprocessed and then passed to the VGG16 convolutional neural network for tumor property classification. VGG16 uses smaller convolutional kernels instead of a larger convolutional kernel to achieve a reduction in network parameters and thus improve network performance. The system is trained using segmented RGB images generated from ground truth images of the ISIC2016 dataset, and finally a softmax classifier is used for pixel-level classification of melanoma lesions. In this study, a new method to become a lesion classifier was designed to classify melanoma lesion regions into benign and malignant tumors based on the results of pixel-level classification, and experiments were conducted on two well-established public test datasets, ISIC2016 and ISIC2017, with a final accuracy of 96.1%. The results indicate that convolutional neural networks are suitable for melanoma diagnosis identification. This study is of great relevance for advanced cancer caused by malignant melanoma.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3