Digital Camouflage Generation Based on an Improved CycleGAN Network Model

Author:

Xia Leixiang1,Yu Jun1,Jiang Kuncai1,Hu Zhiyi2,Xie Yunshan1

Affiliation:

1. School of Computer Science and Engineering , Xi’an Technological University , Xi’an , , Shaanxi , China

2. Engineering Design Institute , Army Research Loboratory , Beijing , , China

Abstract

Abstract This paper proposes a digital camouflage generation method based on an improved CycleGAN to produce camouflage patterns with a high degree of fusion with the background and realistic texture details. Firstly, a SE-ResNet network structure is constructed by combining the residual network ResNet with the channel attention mechanism SENet, enabling flexible adjustment of channel weights to effectively extract crucial channel features and enhance the network's perception capability of important information in images. Secondly, a color preservation loss is introduced to improve the adversarial loss function, thereby avoiding training instability and fluctuation in pattern quality. Experimental results demonstrate that the camouflage patterns generated using the proposed method achieve a Structural Similarity Index (SSIM) of 0.77 and a Peak Signal-to-Noise Ratio (PSNR) of 18.9, representing improvements of 0.27 and 3.3, respectively, compared to the original CycleGAN. This method can generate digital camouflage patterns with richer details, textures, and high fusion with the background.

Publisher

Walter de Gruyter GmbH

Reference11 articles.

1. Yang Di. Evaluation Method of Camouflage Effect in Dynamic 3D Scenes [Dissertation]. Jiangnan University, 2024. DOI: 10.27169/d.cnki.gwqgu.2023.001844.

2. Teng Xu. Research on Digital Camouflage Generation Based on Generative Adversarial Networks [Dissertation]. Southwest University of Science and Technology, 2021. DOI: 10.27415/d.cnki.gxngc.2021.000342.

3. Teng Xu, Zhang Hui, Yang Chunming, Zhao Xujian, Li Bo. Digital Camouflage Disguise Generation Method Based on Cycle-Consistent Adversarial Networks [J]. Computer Applications, 2020, 40(02): 566–570.

4. Luo Li. Research and Application of Adversarial Sample Generation Method Based on CycleGAN [Dissertation]. Guilin University of Electronic Technology, 2023. DOI: 10.27049/d.cnki.ggldc.2023.001423.

5. Liu, Zunyang et al. “Background dominant colors extraction method based on color image quick fuzzy c-means clustering algorithm.” Defence Technology (2020): n. pag.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3