X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures

Author:

Trybuś B.1,Olive J. M.2,Lenoir N.3,Zieliński A.1

Affiliation:

1. Gdansk University of Technology , Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering , Narutowicza 11/12, 80-233 Gdańsk , Poland

2. C.N.R.S., I2M, UMR 5295 , 351 cours de la Liberation, Talence 33405 , France

3. PLACAMAT : Plateforme Aquitaine de Caractérisation des Matériaux: UMS C.N.R.S. 3626 , 87 Av. Du Dr. A. Schweitzer, 33600 Pessac , France

Abstract

ABSTRACT The investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube surfaces, below and over crystalline transformation temperature of zirconium oxides. The commercial tubes were oxidized at 1273 K and 1373 K in calm air for 30 min and then examined with a technique novel for such purpose, namely a high-resolution X-ray computer tomography. The light microscopy was used to examine the cross-surfaces. The obtained results show that the form and intensity of oxide damage is significant and it is in a complicated way related to oxidation temperature and on whether external or internal tube surface is studied. The found oxide layer damage forms include surface cracks, the detachment of oxide layers, the appearance of voids, and nodular corrosion. The oxidation effects and damage appearance are discussed taking into account the processes such as formation of oxides, their phase transformation, stress-enhanced formation and propagation of cracks, diffusion of vacancies, formation of nitrides, diffusion of hydrogen into interface oxide-metal, incubation of cracks on second phase precipitates are taken into account to explain the observed phenomena.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3